Treap笔记

Treap是是英文Tree和Heap的合成词,又称树堆。树堆是指具有随机附加域,且附加域满足堆性质的二叉搜索树。它属于平衡树的一种,主要是为了克服二叉搜索树易退化的情况。Treap利用“随机”来创造平衡条件,我们在插入每个节点时,除了其值val,我们还给它随机附加一个权值dat,使得权值val满足BST性质,而dat满足二叉堆性质。如此一来我们就保证了树的深度,使得检索、插入、求前驱、后继以及删除节点的时间复杂度都是O(log N)。
例题:

普通平衡树BZOJ3224
您需要写一种数据结构,来维护一些数,其中需要提供以下操作:

  • 插入数值x
  • 删除数值x(若有多个相同的数,应只删除一个)
  • 查询数值x的排名(若有多个相同的数,应输出最小的排名)
  • 查询排名为x的数值
  • 求数值x的前驱(前驱定义为小于x的最大的数)
  • 求数值x的后继(后继定义为大于x的最小的数)

解题思路:
这是一道平衡树的模板题,我们需要做的操作是在线的增删查,且查询分为四种。我们采用Treap解决。
根据题意,数据种可能有相同的数值,我们可以给每个节点增加一个域cnt,用来记录该节点的“副本数“,初始为1。若插入已存在是数值,就直接把该”副本数“加1。在删除时,减少该副本数,当减为0时删除该节点。如此就解决了关键码相同的问题。
对于查询排名,我们可以给每个节点新增一个域size,记录以该节点为根的子树中所有节点的”副本数“之和。
与线段树一样,我们需要在插入或者删除时从下往上更新size。另外,在发生旋转操作时,也需要修改size。最后,在检索BST基础上,通过判断左右子树size的大小,选择适当的一侧递归,就很容易查询排名了。

代码示例:

#include<iostream>
#include<cstdio>
#include<cstring>
#include<algorithm>
using namespace std;
const int SIZE = 100010;
struct Treap {
	int l, r; // 左右子节点在数组中的下标
	int val, dat; // 节点关键码、权值
	int cnt, size; // 副本数、子树大小
} a[SIZE]; // 数组模拟链表
int tot, root, n, INF = 0x7fffffff;

int New(int val) {
	a[++tot].val = val;
	a[tot].dat = rand();
	a[tot].cnt = a[tot].size = 1;
	return tot;
}

void Update(int p) {
	a[p].size = a[a[p].l].size + a[a[p].r].size + a[p].cnt;
}

void Build() {
	New(-INF), New(INF);
	root = 1, a[1].r = 2;
	Update(root);
}

int GetRankByVal(int p, int val) {
	if (p == 0) return 0;
	if (val == a[p].val) return a[a[p].l].size + 1;
	if (val < a[p].val) return GetRankByVal(a[p].l, val);
	return GetRankByVal(a[p].r, val) + a[a[p].l].size + a[p].cnt;
}

int GetValByRank(int p, int rank) {
	if (p == 0) return INF;
	if (a[a[p].l].size >= rank) return GetValByRank(a[p].l, rank);
	if (a[a[p].l].size + a[p].cnt >= rank) return a[p].val;
	return GetValByRank(a[p].r, rank - a[a[p].l].size - a[p].cnt);
}

void zig(int &p) {
	int q = a[p].l;
	a[p].l = a[q].r, a[q].r = p, p = q;
	Update(a[p].r), Update(p);
}

void zag(int &p) {
	int q = a[p].r;
	a[p].r = a[q].l, a[q].l = p, p = q;
	Update(a[p].l), Update(p);
}

void Insert(int &p, int val) {
	if (p == 0) {
		p = New(val);
		return;
	}
	if (val == a[p].val) {
		a[p].cnt++, Update(p);
		return;
	}
	if (val < a[p].val) {
		Insert(a[p].l, val);
		if (a[p].dat < a[a[p].l].dat) zig(p); // 不满足堆性质,右旋
	}
	else {
		Insert(a[p].r, val);
		if (a[p].dat < a[a[p].r].dat) zag(p); // 不满足堆性质,左旋
	}
	Update(p);
}

int GetPre(int val) {
	int ans = 1; // a[1].val==-INF
	int p = root;
	while (p) {
		if (val == a[p].val) {
			if (a[p].l > 0) {
				p = a[p].l;
				while (a[p].r > 0) p = a[p].r; // 左子树上一直向右走
				ans = p;
			}
			break;
		}
		if (a[p].val < val && a[p].val > a[ans].val) ans = p;
		p = val < a[p].val ? a[p].l : a[p].r;
	}
	return a[ans].val;
}

int GetNext(int val) {
	int ans = 2; // a[2].val==INF
	int p = root;
	while (p) {
		if (val == a[p].val) {
			if (a[p].r > 0) {
				p = a[p].r;
				while (a[p].l > 0) p = a[p].l; // 右子树上一直向左走
				ans = p;
			}
			break;
		}
		if (a[p].val > val && a[p].val < a[ans].val) ans = p;
		p = val < a[p].val ? a[p].l : a[p].r;
	}
	return a[ans].val;
}

void Remove(int &p, int val) {
	if (p == 0) return;
	if (val == a[p].val) { // 检索到了val
		if (a[p].cnt > 1) { // 有重复,减少副本数即可
			a[p].cnt--, Update(p);
			return;
		}
		if (a[p].l || a[p].r) { // 不是叶子节点,向下旋转
			if (a[p].r == 0 || a[a[p].l].dat > a[a[p].r].dat)
				zig(p), Remove(a[p].r, val);
			else
				zag(p), Remove(a[p].l, val);
			Update(p);
		}
		else p = 0; // 叶子节点,删除
		return;
	}
	val < a[p].val ? Remove(a[p].l, val) : Remove(a[p].r, val);
	Update(p);
}

int main() {
	Build();
	cin >> n;
	while (n--) {
		int opt, x;
		scanf("%d%d", &opt, &x);
		switch (opt) {
		case 1:
			Insert(root, x);
			break;
		case 2:
			Remove(root, x);
			break;
		case 3:
			printf("%d\n", GetRankByVal(root, x) - 1);
			break;
		case 4:
			printf("%d\n", GetValByRank(root, x + 1));
			break;
		case 5:
			printf("%d\n", GetPre(x));
			break;
		case 6:
			printf("%d\n", GetNext(x));
			break;
		}
	}
}

参考书目:

  • 《算法竞赛进阶指南》李煜东.P229
已标记关键词 清除标记
©️2020 CSDN 皮肤主题: 程序猿惹谁了 设计师:白松林 返回首页