CodeForce #600(Div2) 解题报告

A. Single Push

题意简述:
给定两个序列 a 和 b,要求从序列 a 中选出连续的一段[l , r] ,对这段上的每个位置+k(k >= 0),试问只操作一次能否使得序列 a 变为序列 b 。
解题思路:
由于只能操作一次,所以难度大大下降,因此只需要顺序判断 a 是否只有一个区间和 b 不同,且差值全部相同且为负。
代码示例:

#include<bits/stdc++.h>
using namespace std;
int t,n;
const int N = 1e5+10;
int a[N],b[N];
int getInt(){
	int res = 0;
	bool neg = false;
	char c = getchar();
	while(c != '-' && (c < '0' || c > '9')) c = getchar();
	if(c == '-') neg = true, c = getchar();
	while(c >= '0' && c <= '9') res = res*10 + c-'0',c = getchar();
	return neg?-res:res;
}
bool solve(){
	for(int i = 1;i <= n;i++) a[i] = a[i]-b[i];
	int cnt = 0;
	for(int i = 1;i <= n;i++){
		if(a[i] > 0) return false;
		if(a[i] && a[i] != a[i-1]) cnt++;
	}
	return cnt <= 1;
}
int main(){
	t = getInt();
	while(t--){
		n = getInt();
		for(int i = 1;i <= n;i++) a[i] = getInt();
		for(int i = 1;i <= n;i++) b[i] = getInt();
		if(solve()) puts("YES");
		else puts("NO");
	}
	return 0;
}

B. Silly Mistake

题意简述:
定义一个连续的序列是合法的,当且仅当:

  • 有一个正数,就有一个负数,例如有 5 ,就要有 -5;
  • 负数之前必须有它的正数,即 5 只能在 -5 前面;
  • 每个数对仅出现一次,即 5 ,-5,5,-5是不合格法的。

给定一个序列 a,其中ai <= 1e6,请问可以将序列a分为多少个合法的子序列,并输出每个子序列的长度,若不存在划分方法,则输出-1,否则输出任意满足条件的答案。

解题思路:
需要在O(N)时间内解决,就是模拟题,只需要每次遍历到一个数就判断当且序列是否合法就行了,若合法就划分,否则或退出输出-1,或继续加入元素。
需要注意若用前缀和作为判断条件可能会超 int,需要用longlong,另外对于每个条件分支一定要仔细划分,避免遗漏出错。

代码示例:

#include<bits/stdc++.h>
using namespace std;
const int N = 1e6+10;
int n;
int a[N];
int getInt(){
	int res = 0;
	bool neg = false;
	char c = getchar();
	while(c != '-' &&(c < '0' || c > '9')) c = getchar();
	if(c == '-') neg = true, c = getchar();
	while(c >= '0' && c <= '9') res = res*10+ c-'0', c = getchar();
	return neg?-res:res;
}
int vis[N],d[N],tot = 0;
int num[N];
__int64 sum[N];
bool solve(){
	if(n&1) return false;
	for(int i = 1;i <= n;i++) sum[i] = sum[i-1] + a[i];
	for(int i = 1,pre = 0;i <= n;i++){
		if(a[i] > 0){
			if(num[a[i]] != 0 || vis[a[i]] > pre) return false;
			num[a[i]]++; vis[a[i]] = i;
		}else{
			if(num[-a[i]] != 1) return false;
			num[-a[i]]--;
		}
		if(sum[i] == 0) d[++tot] = i-pre,pre = i;
		else if(sum[i] < 0) return false;
	}
	if(!tot || sum[n]) return false;
	else{
		printf("%d\n",tot);
		for(int i = 1;i < tot;i++) printf("%d ",d[i]);
		printf("%d\n",d[tot]);
	}
	return true;
}
int main(){
	// freopen("in","r",stdin);
	// freopen("out","w",stdout);
	n = getInt();
	for(int i = 1;i <= n;i++) a[i] = getInt();
	if(!solve()) puts("-1");
	return 0;
}

C. Sweets Eating

题意简述:
给定一个序列 a,给定 m ,对于 k(k从1到n) ,要求从序列 a 中挑出k个元素,分为若干组,每组最多有m个元素,使得第一组 * 1,第二组 * 2,依次类推,使得它们的总和最小。

解题思路:
首先对序列 a 排序,易得要想总和最小,应该选出最小的 k 个元素。
假设要求的是 f(k) ,那么需要解决的是如何才能快速的从 f(k) 转移到 f(k+1),如果暴力转移,是 O(k) 复杂度,因为要加上每一组最小的元素放到高一组去。我们可以利用前缀和来优化,具体做法是开一个sum数组,sum[i] 记录 %m 为 i 的元素和,我们从小到大依次将 a 序列中的元素加入,就可以在O(1)转移。

代码示例:

#include<bits/stdc++.h>
using namespace std;
const int N = 2e5+10;

int n,m;
int getInt(){
	int res = 0;
	bool neg = false;
	char c = getchar();
	while(c != '-' && (c < '0' || c > '9')) c = getchar();
	if(c == '-') neg = true, c = getchar();
	while(c >= '0' && c <= '9') res = res*10 + c-'0',c = getchar();
	return neg?-res:res;
}
int a[N];
typedef __int64 ll;
ll sum[N],ans[N];
void solve(){
	sort(a+1,a+1+n);
	for(int k = 1;k <= n;k++){
		ans[k] = ans[k-1] + sum[k%m] + a[k];
		sum[k%m] += a[k];
	}
	for(int i = 1;i <= n;i++) printf("%I64d ",ans[i]);
}
int main(){
	// freopen("in","r",stdin);
	// freopen("out","w",stdout);
	n = getInt(); m = getInt();
	for(int i = 1;i <= n;i++) a[i] = getInt();
	solve();
	return 0;
}

D. Harmonious Graph

题意简述
一个有 N 个点的无向图,节点分别标号为1~N。要求如果图中存在 l --> r 的路径,那么对于所有的 m (l < m < r)都满足 l --> m 。给定一张无向图,试问最少添加多少条边才能使得其满足要求。

解题思路
思路不难想,因为只要求若(l , r)是连通的,那么对于 l 到 r 内的所有点都应(至多)延伸出一条线构成一个连通分量,易得一张图最多需要 N-2 条边;很容易想到用并查集来做,将相连通的点放在同一个集合,分配一个编号。然后记录每个集合(连通分量)最后一个点的位置 ed ,然后只需要从前往后依次遍历,若当前节点在另一个集合的范围内,则合并两个集合并将 ans++;若当前集合可以更新有边界,则更新。
思路是正确的,但是被卡了好多次,错了很多细节,首先就是求集合‘编号’需要调用Find()函数,而不是直接访问par[]数组,par[]数组只是一个辅助数组而已;然后还有就是通过Merge()函数后,集合的编号可能会改变,因此按照集合的编号来存有边界是不合理的,应该再转化为按照位置来存。

代码示例

#include<bits/stdc++.h>
using namespace std;
const int N = 2e5+10;
const int M = 2e5+10;
int par[N];
int Find(int x){
	if(par[x] == x) return x;
	return par[x] = Find(par[x]);
}
bool Merge(int x,int y){
	int a = Find(x), b = Find(y);
	if(a == b) return false;
	if(a < b) swap(a,b);
	par[a] = b;
	return true;
}
int getInt(){
	int res = 0;
	bool neg = false;
	char c = getchar();
	while(c != '-' && (c < '0' || c > '9')) c = getchar();
	if(c == '-') neg = true, c = getchar();
	while(c >= '0' && c <= '9') res = res*10+c-'0', c = getchar();
	return res;
}
int n,m;
int vis[N],ed[N],ls[N];
int main(){
	n = getInt(); m = getInt();
	for(int i = 1;i <= n;i++) par[i] = i;
	for(int i = 1,x,y;i <= m;i++){
		x = getInt(); y = getInt();
		Merge(x,y);
	}
	for(int i = n;i > 0;i--)
		if(!ed[Find(i)]) ed[Find(i)] = i;
	for(int i = 1;i <= n;i++) ls[i] = ed[Find(i)];
	int x = 1,last = ls[x] ,ans = 0;
	for(int i = 2;i <= n;i++){
		if(i < last && Merge(x,i)) ans++;
		if(ls[i] > last){
			last = ls[i]; x = i;
		}
	}
	printf("%d\n",ans);
	return 0;
}
已标记关键词 清除标记
©️2020 CSDN 皮肤主题: 程序猿惹谁了 设计师:白松林 返回首页